Generators versus projective generators in abelian categories
نویسندگان
چکیده
منابع مشابه
Gorenstein projective objects in Abelian categories
Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...
متن کاملProjective Summands in Generators
An i?-module Mis a generator (of the category of modules) provided every module is a homomorphic image of a suitable direct sum of copies of M. Equivalently, some M has R as a summand. Except in the last section, all rings are assumed to be commutative, Noetherian domains, and modules are usually finitely generated. In this context generators are exactly those modules that have non-zero free su...
متن کاملgorenstein projective objects in abelian categories
let $mathcal {a}$ be an abelian category with enough projective objects and $mathcal {x}$ be a full subcategory of $mathcal {a}$. we define gorenstein projective objects with respect to $mathcal {x}$ and $mathcal{y}_{mathcal{x}}$, respectively, where $mathcal{y}_{mathcal{x}}$=${ yin ch(mathcal {a})| y$ is acyclic and $z_{n}yinmathcal{x}}$. we point out that under certain hypotheses, these two g...
متن کامل-sum Generators of Finite Abelian Groups
Given a finite Abelian group A and an integer t, 1 ≤ t ≤ A −1, a subset S of A is called a t-sum generator of A if every element of A can be written as the sum of exactly t distinct elements of S. In this paper we investigate the minimal integer M(t, A) such that every set S ⊆ A of size S > M(t, A) is a t-sum generator of A. The value of M(t, A) is completely determined for groups of even order.
متن کاملOn Generators in Archimedean Copulas
This study after reviewing construction methods of generators in Archimedean copulas (AC), proposes several useful lemmas related with generators of AC. Then a new trigonometric Archimedean family will be shown which is based on cotangent function. The generated new family is able to model the low dependence structures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2018
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2018.02.027